638 research outputs found

    Natural fourth generation of leptons

    Full text link
    We consider implications of a fourth generation of leptons, allowing for the most general mass patterns for the fourth generation neutrino. We determine the constraints due to the precision electroweak measurements and outline the signatures to search for at the LHC experiments. As a concrete framework to apply these results we consider the minimal walking technicolor (MWTC) model where the matter content, regarding the electroweak quantum numbers, corresponds to a fourth generation.Comment: 21 pages, 11 figures, 1 table; version to appear in JHE

    Pressure to order g8log(g)g^8*log(g) in ϕ4\phi^4-theory at weak coupling

    Full text link
    We calculate the pressure of massless ϕ4\phi^4-theory to order g8log(g)g^8\log(g) at weak coupling. The contributions to the pressure arise from the hard momentum scale of order TT and the soft momentum scale of order gTgT. Effective field theory methods and dimensional reduction are used to separate the contributions from the two momentum scales: The hard contribution can be calculated as a power series in g2g^2 using naive perturbation theory with bare propagators. The soft contribution can be calculated using an effective theory in three dimensions, whose coefficients are power series in g2g^2. This contribution is a power series in gg starting at order g3g^3. The calculation of the hard part to order g6g^6 involves a complicated four-loop sum-integral that was recently calculated by Gynther, Laine, Schr\"oder, Torrero, and Vuorinen. The calculation of the soft part requires calculating the mass parameter in the effective theory to order g6g^6 and the evaluation of five-loop vacuum diagrams in three dimensions. This gives the free energy correct up to order g7g^7. The coefficients of the effective theory satisfy a set of renormalization group equations that can be used to sum up leading and subleading logarithms of T/gTT/gT. We use the solutions to these equations to obtain a result for the free energy which is correct to order g8log(g)g^8\log(g). Finally, we investigate the convergence of the perturbative series.Comment: 29 pages and 12 figs. New version: we have pushed the calculations to g^8*log(g) using the renormalization group to sum up log(g) from higher orders. Published in JHE

    Using Geosynchronization for incremental update of INSPIRE Service Databases

    Get PDF

    The Electroweak Phase Transition in Ultra Minimal Technicolor

    Full text link
    We unveil the temperature-dependent electroweak phase transition in new extensions of the Standard Model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly-conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe Ultra Minimal Walking Technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space which yield a strong first order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.Comment: 38 RevTeX pages, 9 figure

    Minimal Flavor Constraints for Technicolor

    Get PDF
    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and masses of the lightest spin-one resonances. Our analysis is applicable to any four and higher dimensional extension of the standard model reducing to models of dynamical electroweak symmetry breaking.Comment: 26 pages, we have added appendix C and some references and corrected some typo

    Constraints on Conformal Windows from Holographic Duals

    Full text link
    We analyze a beta function with the analytic form of Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional gravity-dilaton environment. We show how dilaton inherits poles and fixed points of such beta function through the zeros and points of extremum in its potential. Super Yang-Mills and supersymmetric QCD are studied in detail and Seiberg's electric-magnetic duality in the dilaton potential is explicitly demonstrated. Non-supersymmetric proposals of similar functional form are tested and new insights into the conformal window as well as determinations of scheme-independent value of the anomalous dimension at the fixed point are presented.Comment: Fig. 5b is corrected to match the discussion in the tex
    corecore